ABSTRACT

The association of sperm antibodies with infertility in 1346 Zebu cattle, including 435 males and 911 females, was serologically investigated. Sperm antibodies were not detected in yearling animals and very few animals were positive for sperm antibodies below the age of 36 months. The proportion of animals, both males and females, with sperm antibodies increased significantly with age (P<0.001). The proportion of animals positive for sperm antibodies was also significantly related to sex (P<0.001). In the females, the proportion of animals positive for sperm antibodies increased, and was significantly associated, with increased parity (P<0.001). The mean age at first calving and the mean intercalving interval were significantly higher in the group positive for sperm antibodies compared to the negative animals (P<0.001).

Key words: Sperm antibodies, Zebu cattle, infertility

INTRODUCTION

Infertility is a serious problem in animal production and accounts for great economic losses in the livestock industry. Causes of infertility may be infections or non-infections. Infertility investigation is usually requested by cattle farmers when the calf crop is low or when there is regular return to oestrus by cows that had been mated either naturally or by artificial insemination in the herd. In the North-eastern United States of America, 12-19% of dairy cows culled from herds each year were because of infertility or sterility (Thompson and Patterson, 1967). Apart from infectious causes of infertility, there have been some reports that there were immunological causes. For example, antibodies to sperm or egg yolk had been suggested to be possible causes of subfertility in cows (Hunter, 1972; Coulter et al., 1976) and this has stimulated interest in the consideration of immunological infertility investigation. Menge et al. (1962) observed that semen treated with immune sera prior to insemination of heifers resulted in fertilization failure and possible early embryonic mortality, while normal sera did not have anti-infertility effect. Menge and Protzman (1967) also demonstrated anti-infertility effect of sperm antibodies in heifers iso-immunized with semen and bred artificially. A high incidence of delayed return to oestrus and very low pregnancy rates had been observed in heifers iso-immunized with semen which also correlated with sperm antibody level (Menge, 1969).

Since most information on sperm antibodies in cattle, had been based on experimental immunization and use of antisera on semen for artificial insemination, this study was designed to investigate whether sperm antibodies are produced by naturally bred Zebu cows. Attempts were also made to see if there is any correlation between such antibodies and the reproductive efficiency of the animals.

MATERIALS AND METHODS

Blood samples were randomly obtained from 1346 cattle including 435 males and 911 females, kept in private and Government farms in the South-western part of Nigeria. These animals varied in age from newborn to >72 months. The animals were of the Zebu breed (White Fulani, Sokoto Gudali, Red Bororo) and some Ndama. Sera were separated from these samples and kept at -20°C until used for assay for sperm antibodies. The recorded age, parity and intercalving intervals of the females were also obtained from the farms as part of the history of each animal.

Preparation of antigens

Sperm antigens were prepared as described previously for the boar (Fayemi, 1988; Fayemi et al., 1992). Briefly, semen samples were collected by artificial vaginal from five bulls. The semen samples were pooled together and centrifuged at 1200g for 5 minutes to separate the sperm cells, which were then washed three times in phosphate buffered saline (PBS)
and resuspended at a concentration of 1 x 10^6 cells/ml. Smears of this sperm cell suspension were made on slides and fixed with methanol.

Assay of sera from sperm antibodies

The sera were analyzed using the immunoperoxidase assay, previously described for human sperm antibody (Holcberg *et al.*, 1986) and modified for swine sperm antibody (Fayemi, 1988). Briefly, the slides prepared above were incubated with 1% bovine sperm albumin (BSA) for 2 hours at 4°C, washed and then incubated with various dilutions of each serum sample for 1 hour at 37°C. The slides were washed for 15 minutes in PBS before addition of peroxidase conjugated rabbit anti-bovine IgG (Kirkegard and Perry Laboratories, KPL). The slides were then incubated for 45 minutes at 37°C and washed for 15 minutes in PBS. The substrate solution (10 mg 3, 3’-Diaminobenzindine tetrahydrochloride, Polysciences Inc) dissolved in 30 ml of Tris buffer (0.05M, pH 7.6 at 25°C) and 27µl 3% hydrogen peroxide (added before use) was poured on the slides and left for 5 minutes at room temperature before washing in PBS. The slides were then mounted in 10% glycerol in PBS, covered with coverslips and examined under the microscope for dark brownish colouration of the sperm membranes if the serum sample contained sperm antibodies, as demonstrated previously in swine (Fayemi, 1988).

Statistical analysis

The proportion of positive samples were categorized according to age, parity and age at first calving and intercalving intervals of the animals. Logistic regression was used to determine which variables were significantly associated with serological status.

RESULTS

The results of the assay of sperm antibodies in different age groups are shown in Table 1. Sperm antibodies were not detected in the yearlings (0-12 months of age) in both males and females. Very few males carried sperm antibodies below the age of 36 months. A higher proportion of females were tested positive for the antibodies during this same period. The proportion of animals (both males and females) with sperm antibodies increased significantly with age (P<0.001). The proportion positive was also significantly related to sex (P<0.01) because the proportion of females positive was significantly higher than males in each age group. Total number of males tested was 435, of which only 42 (9.66%) were positive compared to 107 out of 911 (11.75%) for females. There were no significant association between sex and age.

In the females the proportion of cows positive for sperm antibodies increased and was significantly associated with increased parity (P<0.001) (Table 2, Fig. 1). The mean age at 1st calving and the mean intercalving interval were significantly higher in the group positive (58.52 ± 2.46 months and 687.33 ± 64.74 days, respectively) for sperm antibodies compared to the negative animals (46.70 ± 1.10 months and 490.75 ± 33.67 days, respectively, P<0.001).

DISCUSSION

The results of the present study show that there was auto- and iso-immunity to sperm antigens in the bovine animals tested. Sperm antibodies have been demonstrated in the sera in human and animals (Mathur *et al.*, 1986; Fayemi *et al.*, 1992; Waziri and Fayemi, 2000) and associated with infertility (Meinertz *et al.*, 1990). The proportion of animals that were seropositive increased with age both in males and females. The increase in the proportion of seropositive animals with age in the males may be as a result of infection or injuries. Ordinarily, the male does not produce antibodies against sperms because of the effective testis barrier produced by the tight sertoli cell junctions (Dym and Fawcett, 1970), except when they are disrupted especially by infection. Infections like trypanosomes have been associated with testicular pathologies (Ikede and Akpavie, 1982) and these are enzootic in Nigeria. In the cows increased age can result in trauma in the reproductive tract and contact with sperm cells that are foreign, can stimulate immune reaction coupled with the fact that autoimmunity in males had been associated with isoimmunity in females (Mathur *et al.*, 1985).

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>0-12</th>
<th>13-24</th>
<th>25-36</th>
<th>37-48</th>
<th>49-60</th>
<th>61-72</th>
<th>>72</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total males</td>
<td>36</td>
<td>62</td>
<td>65</td>
<td>125</td>
<td>67</td>
<td>52</td>
<td>28</td>
<td>435</td>
</tr>
<tr>
<td>Males positive</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>% Male positive</td>
<td>0.161</td>
<td>4.62</td>
<td>8.80</td>
<td>13.43</td>
<td>19.23</td>
<td>20.57</td>
<td>8</td>
<td>9.66</td>
</tr>
<tr>
<td>Total females</td>
<td>38</td>
<td>73</td>
<td>187</td>
<td>234</td>
<td>152</td>
<td>138</td>
<td>89</td>
<td>911</td>
</tr>
<tr>
<td>Female positive</td>
<td>0</td>
<td>3</td>
<td>15</td>
<td>23</td>
<td>19</td>
<td>25</td>
<td>22</td>
<td>107</td>
</tr>
<tr>
<td>% Female positive</td>
<td>0.11</td>
<td>8.02</td>
<td>9.83</td>
<td>12.5</td>
<td>18.12</td>
<td>24.72</td>
<td>11</td>
<td>20.2</td>
</tr>
<tr>
<td>Total tested</td>
<td>74</td>
<td>135</td>
<td>252</td>
<td>359</td>
<td>219</td>
<td>190</td>
<td>117</td>
<td>1346</td>
</tr>
<tr>
<td>Total positive</td>
<td>0</td>
<td>4</td>
<td>18</td>
<td>34</td>
<td>26</td>
<td>35</td>
<td>30</td>
<td>149</td>
</tr>
<tr>
<td>% Total positive</td>
<td>0.11</td>
<td>2.96</td>
<td>7.14</td>
<td>9.47</td>
<td>12.79</td>
<td>18.42</td>
<td>25</td>
<td>11.07</td>
</tr>
</tbody>
</table>
It was observed that higher proportions of males were positive for antibodies than females especially in older animals. This is similar to the finding in humans, where male autoimmunity was more prevalent than female isoimmunity (Mathur et al., 1981).

The proportion of cows positive for sperm antibodies increased with increase in parity. Parturition can induce injury to the reproductive tract especially in cases of dystocia and injury to the reproductive tract may play a role in induction of immunity against sperm (Griffin et al., 1971).

The significant increase in the age at first calving for seropositive animals is explainable by the infertility caused by sperm antibodies. Infertility may be due to sperm agglutination (Boettcher et al., 1977) decreased sperm motility (Mathur et al., 1984), and inhibition of cervical mucus penetration (Hendry et al., 1982; Menge et al., 1982). The infertility may also be a result of inhibition of sperm penetration of ova (Clarke et al., 1995; Castle et al., 1997; D’Cruz et al., 1997). All these probable causes of infertility can also cause increased intercalving interval which in this study was significantly higher in the group that was seropositive to sperm antibodies.

In conclusion, auto- and iso-immunity to sperms in the form of sperm antibodies were detected in the sera of Zebu bulls and cows tested under normal field conditions. It is speculated that sperm antibodies may be one of the causes of infertility in these animals. Further research on the effect of sperm antibodies on fertility in the bovine and other farm animals is considered necessary.

Acknowledgement
The author is grateful to Mr. P.I. Odili for his technical assistance.

REFERENCES

